Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

(S)-trans-Cyclohexane-1,2-dicarboximide

Maria Gdaniec, ${ }^{\text {a* }}$ Elżbieta Nowak, ${ }^{\text {a }}$ Maria J. Milewska ${ }^{\text {b }}$ and Tadeusz Połoński ${ }^{\text {b }}$

${ }^{\text {a }}$ Faculty of Chemistry, Adam Mickiewicz University, 60-780 Poznań, Poland, and
${ }^{\mathbf{b}}$ Department of Organic Chemistry, Technical University of Gdańsk, 80-952 Gdańsk, Poland
Correspondence e-mail: magdan@amu.edu.pl
Received 12 September 2002
Accepted 1 October 2002
Online 22 October 2002
The molecule of the title compound, $\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{NO}_{2}$, contains a strained bicyclic system with a significantly twisted imide chromophore. The five-membered ring fragment containing the imide function is strongly puckered and adopts a half-chair conformation. The six-membered ring has a slightly distorted chair conformation. The molecules are joined by strong $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{O}$ and weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds into infinite chains.

Comment

The title compound, (I), can be considered as an example of a strongly twisted succinimide moiety and imide chromophore as a result of trans-fusion of the six- and five-membered rings. Compound (I) was synthesized, together with some optically active succinic anhydrides and imides of known absolute configuration, in order to study the chiro-optical properties of five-membered ring compounds with C_{2} and $C_{2 v}$ local symmetry of the chromophores (Połoński, 1988).

It has been shown that twisting of the chromophores profoundly influences the circular dichroism spectra of cyclic anhydrides and imides (Połoński, 1988; Połoński et al., 1993). Since the molecular geometry parameters of (I) were known only from semi-empirical MNDO (modified neglect of diatomic overlap) calculations (Połoński et al., 1993), we decided to determine the structure of the S, S-enantiomer of (I) by single-crystal X-ray analysis, and we present the results of this analysis here.

A view of the molecule of (I) with the atom-labelling scheme is shown in Fig. 1 and torsion angles are given in

Table 1. A search of the Cambridge Structural Database (CSD, Version 5.23; Allen \& Kennard, 1993) revealed that monocyclic as well as bicyclic succinimide and dithiosuccinimide derivatives exhibit various degrees of puckering of the five-membered ring, with the puckering amplitude (Cremer \& Pople, 1975) being as high as $0.269 \AA$ in tetramethyldithiosuccinimide (CSD refcode NINTAF; Ratajczak-Sitarz et al., 1996) or $0.285 \AA$ in 1,6-dimethyl-8-hydroxy-8-azabicyclo[4.3.0]-nonane-7,9-dione (CSD refcode DENVAT; Hengjin et al., 1985), and only $0.021 \AA$ in succinimide (Fronczek, 1995). The puckering of the succinimide fragment of (I) is very similar to that of NINTAF and DENVAT, with a puckering amplitude of 0.289 (2) \AA and a phase angle of 268.6 (4) $)^{\circ}\left(266.8\right.$ and 272.5° for NINTAF and DENVAT, respectively), indicating a halfchair conformation of the five-membered ring. The sixmembered ring has a slightly distorted chair conformation, with absolute values of the endocyclic torsion angles in the range 53.0 (2)-65.4 (2) ${ }^{\circ}$.

Molecules of (I) are connected into infinite polar chains in the crystal via a strong $\mathrm{N} 2-\mathrm{H} 2 \cdots \mathrm{O} 1(y-1, x,-z)$ hydrogen bond and two weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions (Table 2). There is a striking similarity between the one-dimensional aggregate structure of this chiral imide and the one-dimensional networks formed by the achiral molecules of 3,6-dithia-3,4,5,6tetrahydrophthalimide (DTTHP; Kirfel et al., 1975) and 3,4,5,6-tetrahydrophthalimide (THP; Kirfel, 1975) (Fig. 2).

Figure 1
A view of the structure of (I) with 50% probability displacement ellipsoids. H atoms are shown as small spheres of arbitrary radii.

(a)

(b)

(c)

Figure 2
A comparision of the one-dimensional hydrogen-bonded networks in the crystal structures of hydrogenated phthalimide derivatives with approximately flat condensed ring systems; (a) (I) [symmetry codes: (i) $x-1$, $y-1, z$; (ii) $y-1, x,-z$], (b) THP [symmetry codes: (i) $x, y, 1+z$; (ii) x, $-1-y, \frac{1}{2}+z$], and (c) DTTHP [symmetry codes: (i) $x, y, 1+z$; (ii) x, $\left.-\frac{1}{2}-y, \frac{1}{2}+z\right]$.

The latter two compounds are less strained than (I), but their bicyclic skeletons are significantly flattened, due to the $\mathrm{C} 8=\mathrm{C} 9$ double bond. Similar to (I), their polar one-dimensional networks are stabilized by an $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions. However, one of the short $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{O}$ contacts in DTTHP is substituted by an $\mathrm{S} \cdots \mathrm{O}$ contact of $3.480 \AA$. Substantial differences in the packing modes of these one-dimensional aggregates are observed at the higher level of the structure organization, leading to different spacegroup symmetries in each case $\left[P 4_{1} 2_{1} 2\right.$ for (I), Pmca for THP and $P 2_{1} / c$ for DTTHP].

Experimental

Optically active (I) was prepared as described previously by Połoński (1988). Crystals of (I) can be grown from various polar and non-polar organic solvents as square plates with well developed $\{001\}$ faces, but due to serious crystal defects, they are not suitable for X-ray diffraction studies. However, after many crystallization attempts, we were able to choose, with the help of a polarizing microscope, one good quality single crystal which had the form of a $\{100\}$ plate and gave a satisfactory diffraction pattern.

Crystal data

$\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{NO}_{2}$

$M_{r}=153.18$
Tetragonal, $P 4_{1} 2_{1} 2$
$a=5.903$ (1) \AA
$c=45.164$ (4) \AA
$V=1573.8$ (3) \AA^{3}
$Z=8$
$D_{x}=1.292 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Kuma KM-4 four-circle diffractometer
$\omega / 2 \theta$ scans
1956 measured reflections
1660 independent reflections
1563 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.051$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041$
$w R\left(F^{2}\right)=0.125$
$S=1.07$
1660 reflections
145 parameters
All H -atom parameters refined
$\mathrm{Cu} K \alpha$ radiation
Cell parameters from 46
reflections
$\theta=8-51^{\circ}$
$\mu=0.77 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Plate, colourless
$0.5 \times 0.5 \times 0.2 \mathrm{~mm}$
$\theta_{\text {max }}=80.1^{\circ}$
$h=0 \rightarrow 7$
$k=0 \rightarrow 7$
$l=0 \rightarrow 57$
3 standard reflections every 100 reflections intensity decay: 1.5%

[^0]Table 1
Selected torsion angles $\left({ }^{\circ}\right)$.

$\mathrm{C} 8-\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 3$	$10.5(2)$	$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$59.7(2)$
$\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 9$	$8.8(2)$	$\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 9-\mathrm{C} 8$	$-23.7(2)$
$\mathrm{C} 9-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$-53.0(2)$	$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 9-\mathrm{C} 8$	$58.4(2)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$53.5(3)$	$\mathrm{C} 1-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 3$	$29.0(2)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$	$-54.3(2)$	$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 4$	$-65.4(2)$
$\mathrm{N} 2-\mathrm{C} 1-\mathrm{C} 8-\mathrm{C} 9$	$-24.8(2)$		

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 2 \cdots \mathrm{O} 1^{\mathrm{i}}$	$0.87(3)$	$2.11(3)$	$2.933(2)$	$159(2)$
$\mathrm{C} 7-\mathrm{H} 71 \cdots \mathrm{O}^{\mathrm{ii}}$	$1.02(3)$	$2.70(3)$	$3.658(2)$	$157(2)$
$\mathrm{C} 6-\mathrm{H} 61 \cdots \mathrm{O} 2^{\mathrm{iii}}$	$0.90(3)$	$2.54(3)$	$3.308(2)$	$144(2)$

Symmetry codes: (i) $y-1, x,-z$; (ii) $y, 1+x,-z$; (iii) $1+x, 1+y, z$.
The enantiomorphous space group $P 4_{1} 2_{1} 2$ was assigned based on the known absolute configuration of (I). H atoms were located in a difference Fourier map. Their positional and isotropic displacement parameters were included in the refinement; refined $\mathrm{C}-\mathrm{H}$ distances were in the range $0.90(3)-1.07$ (3) \AA.

Data collection: KM-4 Software (Kuma, 1991); cell refinement: KM-4 Software; data reduction: KM-4 Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: Stereochemical Workstation (Siemens, 1989); software used to prepare material for publication: SHELXL97.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FA1000). Services for accessing these data are described at the back of the journal.

References

Allen, F. H. \& Kennard, O. (1993). Chem. Des. Autom. News, 8, 1, 31-37. Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Fronczek, F. R. (1995). Private communication.
Hengjin, L., Zutao, W. \& Jiyun, L. (1985). Fenz. Kex. Yu Huax. Yanjiu, 5, 57. Kirfel, A. (1975). Acta Cryst. B31, 2494-2495.
Kirfel, A., Will, G. \& Fickentscher, K. (1975). Acta Cryst. B31, 1973-1975.
Kuma (1991). KM-4 User's Guide. Version 3.2. Kuma Diffraction, Wrocław, Poland.
Połoński, T. (1988). J. Chem. Soc. Perkin Trans. 1, pp. 629-637.
Połoński, T., Milewska, M. J., Gdaniec, M. \& Gilski, M. (1993). J. Org. Chem. 58, 3134-3139.
Ratajczak-Sitarz, M., Katrusiak, A. \& Połoński, T. (1996). J. Mol. Struct. 374, 357-362.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Siemens (1989). Stereochemical Workstation Operation Manual. Release 3.4. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

[^0]: $w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0825 P)^{2}\right.$ $+0.2028 P$]
 where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
 $(\Delta / \sigma)_{\max }<0.001$
 $\Delta \rho_{\max }=0.14 \mathrm{e}^{\circ} \AA^{-3}$
 $\Delta \rho_{\min }=-0.13$ e \AA^{-3}
 Extinction correction: SHELXL97
 (Sheldrick, 1997)
 Extinction coefficient: 0.0029 (8)

