Acta Crystallographica Section C Crystal Structure Communications

ISSN 0108-2701

(*S*)-*trans*-Cyclohexane-1,2-dicarboximide

Maria Gdaniec,^a* Elżbieta Nowak,^a Maria J. Milewska^b and Tadeusz Połoński^b

^aFaculty of Chemistry, Adam Mickiewicz University, 60-780 Poznań, Poland, and ^bDepartment of Organic Chemistry, Technical University of Gdańsk, 80-952 Gdańsk, Poland

Correspondence e-mail: magdan@amu.edu.pl

Received 12 September 2002 Accepted 1 October 2002 Online 22 October 2002

The molecule of the title compound, $C_8H_{11}NO_2$, contains a strained bicyclic system with a significantly twisted imide chromophore. The five-membered ring fragment containing the imide function is strongly puckered and adopts a half-chair conformation. The six-membered ring has a slightly distorted chair conformation. The molecules are joined by strong N-H···O and weak C-H···O hydrogen bonds into infinite chains.

Comment

The title compound, (I), can be considered as an example of a strongly twisted succinimide moiety and imide chromophore as a result of *trans*-fusion of the six- and five-membered rings. Compound (I) was synthesized, together with some optically active succinic anhydrides and imides of known absolute configuration, in order to study the chiro-optical properties of five-membered ring compounds with C_2 and $C_{2\nu}$ local symmetry of the chromophores (Połoński, 1988).

It has been shown that twisting of the chromophores profoundly influences the circular dichroism spectra of cyclic anhydrides and imides (Połoński, 1988; Połoński *et al.*, 1993). Since the molecular geometry parameters of (I) were known only from semi-empirical MNDO (modified neglect of diatomic overlap) calculations (Połoński *et al.*, 1993), we decided to determine the structure of the *S*,*S*-enantiomer of (I) by single-crystal X-ray analysis, and we present the results of this analysis here.

A view of the molecule of (I) with the atom-labelling scheme is shown in Fig. 1 and torsion angles are given in

Table 1. A search of the Cambridge Structural Database (CSD, Version 5.23; Allen & Kennard, 1993) revealed that monocyclic as well as bicyclic succinimide and dithiosuccinimide derivatives exhibit various degrees of puckering of the five-membered ring, with the puckering amplitude (Cremer & Pople, 1975) being as high as 0.269 Å in tetramethyldithiosuccinimide (CSD refcode NINTAF; Ratajczak-Sitarz et al., 1996) or 0.285 Å in 1,6-dimethyl-8-hydroxy-8-azabicyclo[4.3.0]nonane-7,9-dione (CSD refcode DENVAT; Hengjin et al., 1985), and only 0.021 Å in succinimide (Fronczek, 1995). The puckering of the succinimide fragment of (I) is very similar to that of NINTAF and DENVAT, with a puckering amplitude of 0.289 (2) Å and a phase angle of 268.6 (4) $^{\circ}$ (266.8 and 272.5 $^{\circ}$ for NINTAF and DENVAT, respectively), indicating a halfchair conformation of the five-membered ring. The sixmembered ring has a slightly distorted chair conformation, with absolute values of the endocyclic torsion angles in the range 53.0 (2)–65.4 (2)°.

Molecules of (I) are connected into infinite polar chains in the crystal *via* a strong N2–H2···O1(y - 1, x, -z) hydrogen bond and two weak C–H···O interactions (Table 2). There is a striking similarity between the one-dimensional aggregate structure of this chiral imide and the one-dimensional networks formed by the achiral molecules of 3,6-dithia-3,4,5,6tetrahydrophthalimide (DTTHP; Kirfel *et al.*, 1975) and 3,4,5,6-tetrahydrophthalimide (THP; Kirfel, 1975) (Fig. 2).

Figure 1

A view of the structure of (I) with 50% probability displacement ellipsoids. H atoms are shown as small spheres of arbitrary radii.

Figure 2

A comparision of the one-dimensional hydrogen-bonded networks in the crystal structures of hydrogenated phthalimide derivatives with approximately flat condensed ring systems; (a) (I) [symmetry codes: (i) x - 1, y - 1, z; (ii) y - 1, x, -z], (b) THP [symmetry codes: (i) x, y, 1 + z; (ii) x, -1 - y, $\frac{1}{2} + z$], and (c) DTTHP [symmetry codes: (i) x, y, 1 + z; (ii) x, $-\frac{1}{2} - y$, $\frac{1}{2} + z$].

organic compounds

The latter two compounds are less strained than (I), but their bicyclic skeletons are significantly flattened, due to the C8=C9 double bond. Similar to (I), their polar one-dimensional networks are stabilized by an N-H···O hydrogen bond and $C-H \cdots O$ interactions. However, one of the short C- $H \cdots O$ contacts in DTTHP is substituted by an $S \cdots O$ contact of 3.480 Å. Substantial differences in the packing modes of these one-dimensional aggregates are observed at the higher level of the structure organization, leading to different spacegroup symmetries in each case $[P4_12_12 \text{ for (I)}, Pmca \text{ for THP}]$ and $P2_1/c$ for DTTHP].

Experimental

Optically active (I) was prepared as described previously by Połoński (1988). Crystals of (I) can be grown from various polar and non-polar organic solvents as square plates with well developed {001} faces, but due to serious crystal defects, they are not suitable for X-ray diffraction studies. However, after many crystallization attempts, we were able to choose, with the help of a polarizing microscope, one good quality single crystal which had the form of a {100} plate and gave a satisfactory diffraction pattern.

Crystal data

$C_8H_{11}NO_2$	Cu Ka radiation
$M_r = 153.18$	Cell parameters from 46
Tetragonal, $P4_12_12$	reflections
a = 5.903 (1) Å	$\theta = 8-51^{\circ}$
c = 45.164 (4) Å	$\mu = 0.77 \text{ mm}^{-1}$
V = 1573.8 (3) Å ³	T = 293 (2) K
Z = 8	Plate, colourless
$D_x = 1.292 \text{ Mg m}^{-3}$	$0.5 \times 0.5 \times 0.2 \text{ mm}$

Data collection

Kuma KM-4 four-circle				
diffractometer				
$\omega/2\theta$ scans				
1956 measured reflections				
1660 independent reflections				
1563 reflections with $I > 2\sigma(I)$				
$R_{int} = 0.051$				

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.041$ $wR(F^2) = 0.125$ S = 1.071660 reflections 145 parameters All H-atom parameters refined

$\theta_{\rm max} = 80.1^{\circ}$	
$h = 0 \rightarrow 7$	
$k = 0 \rightarrow 7$	
$l = 0 \rightarrow 57$	
3 standard reflections	
every 100 reflections	5
intensity decay: 1.5%	6

 $w = 1/[\sigma^2(F_o^2) + (0.0825P)^2]$ + 0.2028P] where $P = (F_0^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.14 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -0.13 \text{ e} \text{ Å}^{-3}$ Extinction correction: SHELXL97 (Sheldrick, 1997) Extinction coefficient: 0.0029 (8)

Table 1

Selected torsion angles ($^{\circ}$).

C8-C1-N2-C3	10.5 (2)	C6-C7-C8-C9	59.7 (2)
C1-N2-C3-C9	8.8 (2)	N2-C3-C9-C8	-23.7(2)
C9-C4-C5-C6	-53.0(2)	C5-C4-C9-C8	58.4 (2)
C4-C5-C6-C7	53.5 (3)	C1-C8-C9-C3	29.0 (2)
C5-C6-C7-C8	-54.3(2)	C7-C8-C9-C4	-65.4(2)
N2-C1-C8-C9	-24.8(2)		

Table 2

Hydrogen-bonding geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$N2-H2\cdots O1^{i}$	0.87 (3)	2.11 (3)	2.933 (2)	159 (2)
C7−H71···O1 ⁱⁱ	1.02 (3)	2.70 (3)	3.658 (2)	157 (2)
C6-H61···O2 ⁱⁱⁱ	0.90 (3)	2.54 (3)	3.308 (2)	144 (2)

Symmetry codes: (i) y - 1, x, -z; (ii) y, 1 + x, -z; (iii) 1 + x, 1 + y, z.

The enantiomorphous space group $P4_12_12$ was assigned based on the known absolute configuration of (I). H atoms were located in a difference Fourier map. Their positional and isotropic displacement parameters were included in the refinement; refined C-H distances were in the range 0.90(3)-1.07(3) Å.

Data collection: KM-4 Software (Kuma, 1991); cell refinement: KM-4 Software; data reduction: KM-4 Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: Stereochemical Workstation (Siemens, 1989); software used to prepare material for publication: SHELXL97.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FA1000). Services for accessing these data are described at the back of the journal.

References

- Allen, F. H. & Kennard, O. (1993). Chem. Des. Autom. News, 8, 1, 31-37.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Fronczek, F. R. (1995). Private communication.
- Hengjin, L., Zutao, W. & Jiyun, L. (1985). Fenz. Kex. Yu Huax. Yanjiu, 5, 57. Kirfel, A. (1975). Acta Cryst. B31, 2494-2495.
- Kirfel, A., Will, G. & Fickentscher, K. (1975). Acta Cryst. B31, 1973-1975.
- Kuma (1991). KM-4 User's Guide. Version 3.2. Kuma Diffraction, Wrocław,
- Poland.
- Połoński, T. (1988). J. Chem. Soc. Perkin Trans. 1, pp. 629-637.
- Połoński, T., Milewska, M. J., Gdaniec, M. & Gilski, M. (1993). J. Org. Chem. 58. 3134-3139.
- Ratajczak-Sitarz, M., Katrusiak, A. & Połoński, T. (1996). J. Mol. Struct. 374, 357-362.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Siemens (1989). Stereochemical Workstation Operation Manual. Release 3.4. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.